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We summarize and deepen some recent results concerning the extension problem 
for states on operator algebras and general quantum logics. In particular, we 
establish equivalence between the Gleason extension property, the Hahn-Banach 
extension property, and the universal state extension property of projection logics. 
Extensions of Jauch-Piron states are investigated. 

1. INTRODUCTION AND BASIC NOTIONS 

The aim of this paper is to exhibit some recent results concerning states 
on operator algebras and their projection logics. Generally speaking, extension 
theorems play an important role in many fields of mathematics. As examples 
one can take the Hahn-Banach theorem on the extension of linear functionals 
and Gleason-type theorems allowing one to extend a probability measure 
from projection logic to a given operator algebra. The former is a basic tool 
for functional analysis, the latter is a central principle for the noncommutative 
measure theory based on operator algebras. Studying the extension problem 
between projection logics of operator algebras and general quantum logics, 
we establish the equivalence between these basic principles. This equivalence 
provides new insight into the Gleason theorem (Bunce and Wright, 1984, 
1989) and may contribute to the noncommutative measure theory. Moreover, 
we show that many operator algebras (e.g., von Neumann algebras) enjoy 
the universal state extension property. These results strengthen both the gener- 
alized Gleason theorem (Bunce and Wright, 1984, 1989; Gleason, 1957; 
Christensen, 1982; Yeadon, 1984) and extension results in Pfftk (1985). 
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In the final part of this note we shall consider the problem of extending 
Jauch-Piron states. Results of this section generalize results in Amman (1989) 
and Raggio (1981). 

Let us first recall a few notions and fix the notation. Throughout the 
paper let (M, o) be a JB-algebra, i.e., a real Banach algebra M with Jordan 
product o, whose norm satisfies the following conditions: 

1. Ila211 = Ilall 2. 
2. Ila211 -< Ila z + b21l for  all a, b e M. 

We will assume in the sequel that M is unital, i.e., possessing a unit 
element 1. [For the theory of JB-algebras we refer to the monograph Hanche- 
Olsen and Stormer (1984)]. Well-known examples of JB-algebras are self- 
adjoint parts of  C*-algebras equipped with a Jordan product x o y = �89 + 
yx). If M is simultaneously a dual Banach space, then M is called a JBW- 
algebra. This category comprises, e.g., self-adjoint parts of von Neumann 
algebras. A JW-algebra is a weakly closed Jordan subalgebra of the self- 
adjoint part of  a von Neumann algebra. By P(M) we shall denote the set of 
all idempotents of M. (Let us recall that p ~ M is an idempotent if p2 = p). 
Endowed with the ordering p ~ q if and only i f p  o q = p and the operation 
p• = 1 - p, we get an order structure (P(M), 0, 1, - ,  2-) (called projection 
logic), whose properties are generalized in the following notion. 

The (quantum) logic is a partially ordered set (L, 0, 1, -<, 2_) with an 
orthocomplementation relation _1_ satisfying the following conditions: 

1. L has a least and a greatest element 0 and 1, respectively. 
2. a ~ b i m p l i e s b  •  • 
3. a = a •177 
4. If a ~ b • then the supremum a v b exists in L. 
5. If a ~ b, then b = a v (b A a • (orthomodular law). 

(See, e.g., Ptfik and Pulmannov~i, 1991.) Elements a, b e L are said to be 
orthogonal if  a --< b • A state s (finitely additive probability measure) of a 
logic L is defined as a mapping s: L ~ [0, 1] such that s(1) = 1 and 
s(a v b) = s(a) + s(b), whenever a and b are orthogonal. The logic L is 
said to be unital if  for each nonzero element a e L there is a state s of L 
such that s(a) = 1. On the other hand, a state p (positive normalized functional) 
of an algebra M is defined as a functional on M such that p(1) = 1 and p(a 2) 
-> 0 whenever a e M. It is straightforward to show that by restricting a state 
of M to its projection logic, we get a state of P(M). The central question of 
the noncommutative measure theory is whether or not all states arise this 
way. This outstanding problem, known as the Mackey-Gleason problem 
(Gleason, 1957; Mackey, 1963), is more than thirty years old. A positive 
answer would establish a relation between a measure and a state analogous 
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to the Riesz representation theorem in classical integration theory. After 
considerable effort by many authors the Mackey-Gleason question has been 
answered in the affirmative for all JBW-algebras without type 12 direct sum- 
mand (Bunce and Wright, 1984, 1989). Despite this progress the problem 
remains open for general JB-algebras. Motivated by the Mackey-Gleason 
problem, we say that an algebra M has the Gleason property if every state 
of P(M) extends to a state of M. It turns out that the Gleason property can 
be reformulated as an extension property between two special logics and 
then strengthened in some important cases. We pursue this matter in the 
following section. 

2. UNIVERSAL STATE EXTENSION PROPERTY 

We say that a logic L has the universal state extension property if every 
state of L extends to a state of an arbitrary larger unital logic K containing 
L as a sublogic. It has been proved in Pt~ik (1985) that every Boolean algebra 
has the universal state extension property. In the case of projection logics 
the universal state extension property implies the Gleason property of a given 
operator algebra. Indeed, let M be a JB-algebra such that P(M) has the 
universal state extension property. By employing the structure theory of JB- 
algebras, we can embed M into its second dual M**. As M** is a JBW- 
algebra, it is a subalgebra of a direct sum C(X, M 8) �9 B(H)sa (Hanche-Olsen 
and Stormer, 1984). Here C(X, M~) denotes an exceptional JBW-algebra 
consisting of all continuous functions from a compact hyperstonean space X 
into the algebra M3 s of all 3 • 3 matrices over Cayley numbers. The symbol 
B(H),a denotes a self-adjoint part of a C*-algebra of all bounded operators 
acting on a Hilbert space H. If necessary we can enlarge H such that dim H 
>-- 3. According to the Gleason theorem (Bunce and Wright, 1989; Gleason, 
1957), both algebras C(X, M~) and B(H),a admit the Gleason property and 
the same is true of their direct sum. Hence, we can extend every state on 
P(M) to a state on P(C(X, M~) G B(I-1),~) and thereby to a linear state of M. 
Thus, the universal state extension property can be viewed as a stronger form 
of the Gleason property. The main result of Hamhalter (1994a, b) says that, 
perhaps surprisingly, the Gleason property already implies the universal state 
extension property for all projection logics with enough projections. 

Theorem 2.1 (Hamhalter, 1994a, b). Let M be a unital JB-algebra such 
that every maximal associative subalgebra of M is the norm closed linear 
span of its projections. Then P(M) has the Gleason property if and only if 
P(M) has the universal state extension property. 

Let us remark that in the C*-algebra version of this result maximal 
associative subalgebras translate as maximal Abelian subalgebras. The stated 
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result illustrates the power of the Gleason theorem. In fact the Gleason 
theorem guarantees the possibility of extending a state to arbitrary larger 
nonlinear structure. In particular, von Neumann algebras enjoy this property. 

Corollary 2.2 (Hamhalter, 1994a, b). Every projection logic P(M), where 
M is a JBW-algebra (or von Neumann algebra) without type 12 direct sum- 
mand, has the universal state extension property. 

In other words, von Neumann algebra projection logic is well behaved 
as sublogic; passing to any larger logic we do not lose any information about 
the original state space. In the physical interpretation quantum logic describes 
the set of all propositions of a given physical system S, while states of this 
logic correspond to "physical states" of the system S (Mackey, 1963). Let 
us consider a larger system S' containing a subsystem S, where S is described 
by a v o n  Neumann projection lattice. Then, given a state p of S, we can 
always prepare S' such that S is simultaneously in the state p. 

The extension of states guaranteed in Corollary 2.2 can be specified 
further as being Hahn-Banach extensions in a certain linear structure con- 
nected with a given superlogic. We will need the following notions. 

Let S(L) be the state space of a logic L (i.e., the convex set of all states 
of L). Endowed with the topology of pointwise convergence, the space S(L) 
becomes a compact Hausdorff space. Let Ab(L) stand for the real Banach 
space of all bounded affine functions on S(L) with supremum norm. Equipped 
with the pointwise orderingf --- g if and only i f f (s)  <- g(s) for all s E S(L), 
and the unit uL(s) = 1 for all s ~ S(L), the structure (Ab(L), <--, uD becomes 
a complete order unit norm space (Alfsen, 1971; Hanche-Olsen and Stormer, 
1984). The logic L can be mapped into Ab(L) by means of the canonical 
evaluation mapping eL: L --~ Ab(L) defined by eL(a)(s) = s(a) for all a ~ L, 
s ~ S. For example, if M is a JB-algebra then the space Ab(P(M)) can be 
identified with the second dual M** and e p ~  is induced by the canonical 
mapping of M into its second dual (see, e.g., Hanche-Olsen and Stormer, 
1984). 

A state of Ab(L) (positive normalized functional) is defined as a mapping 
p: Ab(L) ~ R satisfying conditions p(f) -> 0 whenever f----- 0 and p(uL) = 
1. If p is a state of Ab(L), then p o eL is a state of logic L. For, if a, b E L 
are orthogonal, then 

p(eL(a v b)) = p(eL(a) + eL(b)) = p(eL(a)) + p(eL(b)) 

and obviously, 0 --- eL(a) <--- uL implies that 0 - p(eL(a)) --- p(uL) = 1. Note 
that not all states arise this way. (As a counterexample we can take, e.g., the 
projection logic of the algebra of 2 • 2 complex matrices.) Nevertheless for 
any JB-algebra we have the following simple observation: 
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Proposition 2.3. Let M be a JB-algebra. Then M has the Gleason property 
if and only if every state of P(M) is of the f o r m f o  ep~M~, w h e r e f i s  a state 
of Ab(P(M)). 

Proof Suppose that M has the Gleason property. Then any state P of 
P(M) extends to a linear state ~ of M. Let us identify Ab(P(M)) with M**. 
A unit UmM ~ is then a unit for Ab(P(M)). Denoting by q the canonical embed- 
ding of M into M**, we get a state P' = ~ (q - l ( . ) )  defined on a closed 
subspace q(M) of M**. Using now the Hahn-Banach theorem, we can find 
a norm-preserving extension f of 0' to a state of Ab(P(M)). Since 119'11 = 
O'(Up(M)) = 1 and Ilfll = I[P'II = 1, we have that Ilfll = f(Up(MI) = 1 and so 
f i s  a state (Alfsen, 1971, Prop. II1.3, p. 69). Therefore p = f o  ep(M). 

Conversely, for any state f on Ab(P(M)) the state q-1 o flq(M) is a 
linear extension o f f  o ee(M) to M. The proof is complete. 

Having equivalence between the Gleason property and the universal 
state extension property, we can further improve Theorem 2.1 and Proposition 
2.3 in the following way (Hamhalter, 1994a,b): 

Theorem 2.4. Let M be a JB-algebra with the Gleason property and such 
that every maximal associative subalgebra of M is a closed linear span of its 
projections. Let K be a unital logic containing P(M) as a sublogic. Then 
Ab(P(M)) can be embedded into Ab(K) and every state p of P(M) is of the form 

f o eKIP(M) 

where f is a state of Ab(K). 

By viewing M as a subspace of Ab(M), we can see that the extensions 
in Corollary 2.2 can be given by Hahn-Banach extensions of the correspond- 
ing states of M. With this in mind, we have obtained the equivalence of the 
following three basic principles: 

1. The universal state extension property (quantum-logic version of 
the Hahn-Banach theorem). 

2. The Gleason property. 
3. The Hahn-Banach extension property for order unit spaces. 

Let us remark at the end of this section that motivated by Proposition 
2.3, we can define the Gleason property for a general quantum logic as 
follows: the unital logic L is said to have the Gleason property if every state 
of L is of the form f o eL, where f is a state of Ab(L). Then for logics having 
the Gleason property the universal state extension property is again equivalent 
to the Hahn-Banach extension property. In order to see it, let us suppose 
that L has the universal state extension property. Then At(L) can be identified 
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with a closed subspace of any space Ab(K), where Kis  a unital logic containing 
L (Hamhalter, 1994a, Lemma 3). If, moreover, L has the Gleason property, 
then any state of L is of the form f o eL, where f is a state of Ab(L) and so 
we can find its extension via the Hahn-Banach theorem. Nevertheless the 
proof of equivalence of the Gleason property and the state extension property 
in the case of operator algebras is essentially based on properties of JB- 
algebras (Hamhalter, 1994a) and probably has no direct analogy in general 
quantum logic settings. 

3. EXTENSIONS OF JAUCH-PIRON STATES 

In the previous section we considered the extension properties of general 
states on projection logics. In this part we focus on extensions within a special 
category of Jauch-Piron states. A state p of a JBW-algebra M is called 
Janch-Piron if p(e v f )  = 0 whenever e, f ~ P(M), with p(e) = p(f) = 0. 
The Jauch-Piron states play an important role in both operator algebra theory 
and the foundations of quantum physics and have been therefore studied 
extensively (Amann, 1989; Hamhalter, 1993; Bunce and Hamhalter, 1994a,b; 
Jauch, 1968; Jauch and Piton, 1969; Raggio, 1981; Riittimann, 1977). It 
follows from the extensive research on the continuity properties of Jauch- 
Piron states (Bunce and Hamhalter, 1994a,b; Hamhalter, 1993) that Jauch- 
Piron states do not usually extend to Jauch-Piron states. To exemplify this, 
let us take an infinite-dimensional Abelian subalgebra A of a yon Neumann 
factor M. We can always find a state p on A such that p(e,) = 0 for some 
sequence (en) of orthogonal projections with sum 1. Since any Jauch-Piron 
state on a factor has the kernel closed under countable sums of orthogonal 
projections (Bunce and Hamhalter, 1994a, Corollary 4.10), p has no Jauch- 
Piton extension over M. Thus, the extension problem for Jauch-Piron states 
is considerably different from the extension problem for general states and 
we cannot expect any analogy of the universal state extension property. 
Nevertheless, it is remarkable that under some circumstances relevant for 
both mathematics and quantum physics, Jauch-Piron states possess a surpris- 
ingly good extension property. Namely, we succeeded in proving the follow- 
ing theorem. 

Theorem 3.1 (Bunce and Hamhalter, 1994b). Let M be a JW-algebra not 
containing type/2 direct summand and acting on a Hilbert space H. Let W 
be the yon Neumann algebra generated by M. Then every Jauch-Piron state 
of M extends to a Jauch-Piron state of W. 

It is commonly assumed in the foundations of quantum physics that the 
structure of bounded observables of a given system is described by a JW- 
algebra. Theorem 3.1 says that in the context of Jauch-Piron states (i.e., 
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states with physical interpretation) we can always take advantage of a more 
special von Neumann algebra system. Theorem 3.1 also makes it possible 
to transfer all results on Jauch-Piron states (Bunce and Hamhalter, 1994a) 
on von Neumann algebras to general JW-algebras. 
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